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Abstract. ThePT -symmetric differential Schrödinger equationHψ = Eψ with the operator
H = H(x) = p2 + ax4 + iβx3 + cx2 + iδx ≡ H ∗(−x) on L2(−∞,∞) is studied. Ata > 0
it is rearranged as a linear algebraic diagonalization. With rigorous proof, our non-variational
construction of bound states offers an infinite-dimensional analogue to the recent finite-dimensional
quasi-exact solution available at the less commona < 0.

1. Introduction

The study of the general parity-breaking anharmonic oscillators

V (x) = ax4 + bx3 + cx2 + dx (1)

has a colourful and inspiring history [1]. Its latest turn came with the recent letter by Bender
and Boettcher [2] who discovered that after a partial restoration of symmetry in the complex
plane,

V (x) = V ∗(−x) (2)

these potentials may become solvable quasi-exactly [3]. The extensive numerical experiments
indicate that all the spectrum of energiesE in the similar potentials is real, bounded and
discrete. According to the conjecture by Daniel Bessis [4] this puzzling observation might
be a straightforward mathematical consequence of the ‘weakened hermiticity’ (2). With
motivations ranging from field theory [5] and nuclear structure [6] up to solid state physics [7]
this hypothesis finds its further support in a few explicit analytic [8] and numerical [9]
constructions and semi-classical [10] or perturbative [11] arguments as well as in several
available rigorous mathematical proofs [12].

In the particular model (1) the condition (2) means that the couplingsa andc remain
real while their partnersb = iβ andd = iδ are purely imaginary. The attention of paper [2]
was solely paid to thenegativevalues of the asymptotically dominant couplinga because of
the related finite-dimensional reducibility and subsequent partial solvability of the bound state
problem at certain special couplings and energies. In the present paper we intend to complement
and complete the latter study by a parallel analysis of its ‘less solvable’ alternative witha > 0.
One has to imagine that in spite of the manifest non-hermiticity of the related Hamiltonian the
procedure of quantization may be kept equally well defined at any sign ofa [13]. Extensive
discussions of this point date back to the well known Dyson argument ([14]; cf the very recent
summary in [15]). The same or similar formalism covers even the limiting case with vanishing
a = 0 at any complexb 6= 0 [16].

0305-4470/99/427419+10$30.00 © 1999 IOP Publishing Ltd 7419



7420 M Znojil

The main reason for the conventionala > 0 is the simplicity of its physical interpretation.
In an unquantized world the minus sign ofa would mean that the particle can disappear
and return from infinity in a finite time. In comparison, the asymptotically real and growing
V (x) admits a more immediate intuitive understanding. Its choice weakens the impact of the
unusual invariance (2) which, in certain applications, mimicks the combined effect of parity
and time reversalPT [10]. With a > 0 we also get a closer contact with the already existing
calculations [17] and with the resummations of perturbation series, say, in terms of the so-
called Hill determinants [18,19] or analytic [20] and matrix [21] continued fractions. The new,
non-Hermitian optionsβ 6= 0 andδ 6= 0 open new perspectives.

We intend to show that the positivity ofa which excludes the quasi-exact solvability need
not contradict an efficient linear algebraic description of bound states. We shall rewrite the
differential Schr̈odinger equation in an equivalent matrix form. Although its dimension remains
infinite, its structure and derivation will parallel its Hermitian Hill-determinant predecessors
characterized globally by a loss of their hermiticity (pars pro toto, the reader may consult the
review [22]). For our present non-Hermitian interaction (1) + (2) such a loss is much less
harmful.

2. Non-terminating recurrences ata > 0

Forces (1) with the ‘weak’ symmetry (2) enter the differential Schrödinger equation(
− d2

dx2
+ ax4 + iβx3 + cx2 + iδx

)
ψ(x) = Eψ(x) x ∈ (−∞,∞) (3)

which has the two independent asymptotic solutions

ψ(±)(x) = exp

[
u
x3

3
+ v

x2

2
+O(x)

]
u = ±√a 6= 0 v = i

β

2u
. (4)

This explains the difference betweena < 0 anda > 0. In the former case we may move the
real axis downwards in the complex plane,x = r − iη, η > 0, r ∈ (−∞,∞). Whenever we
pick upη > −β/4√|a|, we discover that the asymptotic solutionψ(−)(x) remains integrable
at both ends of the real axisr. Some of the (necessarily, analytic) bound statesψ(exact)(x)

may (and do) acquire an elementary form of an exponential-times-polynomial product for
a < 0 [2].

Let us now consider a positive couplinga > 0 and rescale its value toa = 1
for simplicity. The general solution of our Schrödinger equation (3) will have the form
ψ(gen)(x) = µ±ψ(+)(x) + ν±ψ(−)(x). It may only be made compatible with the required
asymptotic decrease nearx →±∞ by the sign-of-x-dependent choice of its parameters,

ψ(phys)(x) = ν+ψ
(−)(x) x � 1,

ψ(phys)(x) = µ−ψ(+)(x) x � −1.
(5)

In contrast to the preceding case, the exact solution cannot be constructed as a product of an
exponential with a polynomial any more. One has to resort to the next eligible possibility, say,

ψ(ansatz)(x) = e−sx
2
∞∑
n=0

hn(ix)
n. (6)

This is a manifestlyPT -invariant infinite-series ansatz. Abbreviating ix = y we derive the
recurrences

Anhn+2 +Cnhn + δhn−1 + θhn−2 − βhn−3 + hn−4 = 0. (7)
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All its coefficients are real:An = (n + 1)(n + 2), Cn = 4sn + 2s − E andθ = 4s2 − c.
By construction, the set (7) is equivalent to our differential equation (3). At all the tentative
energiesE it defines the coefficientshn from an input pairh0 andh1. We have to determine
these parameters via a fit of (6) to the appropriate boundary conditions

ψ(ansatz)(XR) = 0= ψ(ansatz)(−XL) XR � 1 XL � 1. (8)

In comparison with the other numerical methods of solution of the bound state problems with
symmetry (2) [9] such a recurrently specified recipe does not seem any superior, especially
since it requires a cumbersome numerical limiting transitionXR,L → ∞. A deeper insight
and simplifications are asked for.

3. The asymptotics of coefficientshn at n� 1

Recurrences (7) form a linear difference equation of the sixth order. One may recall the standard
theory of its solution [23] as well as its immediate application to quartic oscillators [24, 25].
At the large indicesn, the sextuplet of the independent asymptotic solutionshn acquires the
general Birkhoff form as presented, say, in [26]. All these solutions decrease ashn ∼ O(n−n/3)
at least. For our present purposes, they may easily be re-derived as follows.

Firstly, in the leading-order approximation, we replace equation (7) by the mere two-term
dominant relation betweenhn+2 andhn−4. This inspires us to change variableshn → gn and
we rewrite all the six independent solutions in the same compact form:

hn(p) = λn(p)gn(p)

(31/3)n0(1 +n/3)
p = 1, 2, . . . ,6. (9)

Thep-dependent complex parameterλ(p) = exp[i(2p − 1)π/6] characterizes the dominant
n-dependence of the separate solutions while the new functions or coefficientsgn = gn(p)

vary more slowly withn.
This confirms the linear independence of our six solutions but leaves their absolute values

indistinguishable. In order to remove this degeneracy in size we reintroduce equation (7) in
its amended, second-order asymptotic form

gn+2− gn−4 = 4sλ4

n1/3
gn − βλ

n1/3
gn−3 +O

( gn
n2/3

)
. (10)

With most of the components of the Stirling formula still hidden within the error term, the
smallness of the ratio 1/n1/3 enables us to infer that

gn = eγ n
2/3+O(n1/3) n� 1. (11)

The complex exponentγ = γ (p) = sλ4(p) − βλ(p)/4 depends onp. An elementary
trigonometry gives the explicit formulae

Reγ (1) = Reγ (6) = −
√

3

8
β − s

2
Reγ (2) = Reγ (5) = s

Reγ (3) = Reγ (4) =
√

3

8
β − s

2
.

(12)

In combination with equation (9) this already implies that the radius of convergence of our
Taylor series (6) is infinite. The functionψ(ansatz)(x) is unique and well defined at any complex
x. Its shape is fully determined by the energyE and by a not yet specified choice of the two
initial complex coefficientsh0 andh1.
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The second important consequence of identities (12) is that whenever we satisfy the
condition

s >
|β|

4
√

3
(13)

the general solutionhn =
∑6

p=1Gphn(p) will itself be asymptotically dominated by its two
most quickly growing components,

hn = G2hn(2) +G5hn(5) n� 1. (14)

In this sense we are free to setG1 = G3 = G4 = G6 = 0 in the asymptotic domain of
n � 1. Each choice of the energyE and initialh0 andh1 will only generate a different,x-
andn-independent pair of coefficientsG2 andG5.

4. The asymptotics ofψ(ansatz)(x) at |x| � 1

Equation (14) is a key to our forthcoming replacement of the numerically awkward boundary
conditions (8) by the much more natural approximative truncation of recurrences (7). We
shall parallel the Hermitian construction of [22] and try to bracket the exact energy between
its upper and lower estimates withE 6= E(physical). Under such an assumption our infinite
seriesψ(ansatz)(x) as defined by equation (6) willalwaysexhibit an exponential asymptotic
growth as described quantitatively by equation (4) above. This means that we shall exempt
the possible lucky guess of the exact energy in itsfull precision asneverrelevant inanystep
of our forthcoming considerations. Such a very formal point of view does not contradict the
underlying physical intuition since boundary conditions (8) are approximative. One has to
move to the limitXR,L→∞ in principle.

The most important immediate consequence of our ‘bracketing’ interpretation of boundary
conditions is that at the large absolute values of the coordinate|x| � 1 the firstN exponentially
small componentsO(e−sx2

) may safely be ignored as irrelevant. We may also insert (9) and
(14) inψ(ansatz)(x) ∼ exp(−sx2)

∑∞
n=N+1hn(ix)

n with N � 1 and get

ψ(ansatz)(x) ∼ e−sx
2
∞∑

n=N+1

G2λ
n(2)gn(2) +G5λ

n(5)gn(5)

(31/3)n0(1 +n/3)
(ix)n |x| � 1.

The validity of this formula is a strict consequence of the specific constraint (13) imposed (say,
from now on) upon the admissible quasi-variational parameters.

Once we splitψ(ansatz)(x) = ψ(ansatz)(G2,G5, x) into its two components

ψ(ansatz)(G2, 0, x) ∼ G2e−sx
2
∞∑

n=N+1

(−x)n exp[γ (2)n2/3 +O(n1/3)]

(31/3)n0(1 +n/3)

ψ(ansatz)(0,G5, x) ∼ G5e−sx
2
∞∑

n=N+1

xn exp[γ (5)n2/3 +O(n1/3)]

(31/3)n0(1 +n/3)

we may apply the rule ez ∼ (1 + z/t)t , t � 1 in the error term and get

ψ(ansatz)(G2, 0,−y)
exp(−sy2)

∼ G2

∞∑
n=N+1

1

(31/3)n0(1 +n/3)

{
y ·
[
1 +O

(
1

N1/3

)]}n
and

ψ(ansatz)(0,G5, y)

exp(−sy2)
∼ G5

∞∑
n=N+1

1

(31/3)n0(1 +n/3)

{
y ·
[
1 +O

(
1

N1/3

)]}n
.
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This is valid at all the large argumentsy. Along thepositivesemi-axisy � 1, both the right-
hand-side summands are real and positive. They sum up to the same function exp[y3/3+O(y2)].
This is a consequence of the approximation of the sum by an integral and its subsequent
evaluation by means of the saddle-point method. The same trick was used by Hautot, in
similar context, for theP-symmetric and Hermitian anharmonic oscillators [27].

In contrast to the Hautot’s resulting one-term estimates ofψ , the present asymmetric,
PT -invariant construction leads to the more general two-term asymptotic estimate

ψ(ansatz)(G2,G5, x) ∼ G2 exp[−x3/3 +O(x2)] + G5 exp[x3/3 +O(x2)] |x| � 1.

As long as we deal with the holomorphic function ofx, this estimate may be analytically
continued off the real axis ofx. Near both the ends of the real line and within the asymptotic
wedges|Im x|/|Rex| < tanπ/6 we simply have the rules

ψ(ansatz)(G2,G5, x) ∼ G2 exp[−x3/3 +O(x2)] Rex < −XL � −1 (15)

and

ψ(ansatz)(G2,G5, x) ∼ G5 exp[x3/3 +O(x2)] 1� XR < Rex. (16)

They are fully compatible with formula (5) sincea = 1.

5. The matrix form of the Hamiltonian

Our complex differential Schrödinger equation (3) becomes asymptotically real, in the leading-
order approximation at least. In a suitable normalization the wavefunctionsψ(ansatz)(x) may
be made asymptotically real as well. Near infinity they will obey the standard Sturm–Liouville
oscillation theorems [28]. In particular, after a small decrease of the tentative energy parameter
E > E(physical) the asymptotic nodal zeroXR or−XL originating in one of our boundary
conditions (8) will move towards infinity [29].

This may be rephrased as follows. At a more or less correct physical real pairh0 = ρ cosζ
andh1 = ρ sinζ with ζ ∈ (0, 2π) and with the convenient normalizationρ = 1 a small
change of the energyE somewhere near its correct physical valueE0 ≈ E(physical) will
cause a sudden change of the sign of the asymptotically growing exponentials (15) and (16) at
someζ0 ≈ ζ(physical). This may be re-read as a doublet of conditions:

G2 = G2(E0, ζ0) = 0 G5 = G5(E0, ζ0) = 0. (17)

In the limit N → ∞ of vanishing corrections, these two requirements may be reinterpreted
as a rigorous reincarnation of our original physical asymptotic boundary conditions (8). The
conclusion has several important consequences. Firstly, at a fixedN � 1 we may define

fp = Gp

λN(p) exp[γ (p)N2/3]

(31/3)N0(1 +N/3)
p = 2, 5.

Functionsfp = fp(E, ζ0) differ from their sign-changing predecessorsGp = Gp(E, ζ0) just
by a constant factor nearE0, fp(E, ζ0) ≈ Fp · (E − E0). We may write

hN ≈ (F2 + F5)(E − E0) +O[(E − E0)
2]

(N + 3)1/3hN+1 ≈ [F2λ(2) + F5λ(5)](E − E0) +O[(E − E0)
2]

due to equation (9). This formula connects the two functionsG2,G5 with the two neighbouring
Taylor coefficientshN = hN(E0, ζ0) andhN+1 = hN+1(E0, ζ0) near the physicalE0 andζ0

by an easily invertible regular mapping. This means that the implicit algebraic boundary
conditions (17) are strictly equivalent to the fully explicit requirements

hN(E0, ζ0) = 0 hN+1(E0, ζ0) = 0 N � 1. (18)
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By construction, this becomes an exact physical bound-state condition in the limitN → ∞.
At the finiteN � 1 its appeal lies in its change-of-sign character. This need not make
equation (18) immediately suitable for computations but once we fixN = N0 � 1,E = E0,
ζ = ζ0 and insert the zeros (18) in our recurrences (7), we arrive at the truncated square-matrix
equation 

C0 0 A0

δ C1 0 A1

θ δ
. . .

. . .
. . .

−β θ
. . .

1 −β . . .
. . . AN−3

. . .
. . .

. . .
. . .

. . . 0
1 −β θ δ CN−1





h0

h1

h2

. . .

hN−3

hN−2

hN−1


= 0. (19)

This is our main result. As long asCn = 4sn+2s−E, the energy enters just the main diagonal
and we may determine all its approximate low-lying valuesE0 by the routine (N × N )-
dimensional diagonalization.

6. Discussion

6.1. Illustrative numerical tests

The smallest matrix in equation (19) which contains all the couplings has dimensionN = 5.
It is quite surprising that such a drastic simplification leads to the mere 5% or 6% error in
the ground-state energy. Together with the equally pleasant quick increase of precision with
growingN , this is illustrated in table 1. Table 2 shows where the numerical application of the
present approach can find its natural limitations. We observe a steady decrease of precision at
the higher excitations.

With s = 2 anda = c = β = δ = 1, both tables were computed in MAPLE [30]. This
language keeps the possible loss of precision under careful control. This implies a growth of
computing time at the higher dimensions. Nevertheless, the very quick actual numerical rate
of convergence enabled us to compute all our examples on a current PC in a couple of minutes.

Table 1. TheN -dependence of energies.

N E0 E1

5 1.793 7.547
6 1.823 5.868
7 1.634 5.856
8 1.673 5.138
9 1.627 5.162

10 1.658 4.922
15 1.693 5.106
20 1.692 5.126
21 1.691 5.124
22 1.692 5.123
23 1.692 5.123
24 1.692 5.123
25 1.692 5.123
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Table 2. The growth of precision with dimensionN .

EnergiesEn
n

N 0 1 2 3 4 5 6 7

15 1.693 47 5.106 9.152 13.043 17.817 23.89 31.26 41.55
20 1.691 638 5.125 59 9.280 0 14.050 19.244 — 32.35 —
25 1.691 579 5.123 441 9.258 12 13.8689 18.7925 24.265 30.039 37.97
30 1.691 590 5.123 614 9.261 74 13.8826 18.8922 24.262 29.726 34.67
35 1.691 590 5.123 579 9.261 51 13.8793 18.8838 24.220 29.860 35.85

6.2. Determinantal formulae for the Taylor coefficients

With realh0 andh1 our wavefunctionsψ(ansatz)(x) are composed of the spacially symmetric
real part and spacially antisymmetric imaginary part. Such a normalization fixes the phases
of the complex constantsG2 andG5 accordingly, i.e. via equation (14). This clarifies the
structure of the asymptotics of the wavefunctions.

Polynomial approximants of the Taylor series (6) offer a reliable picture ofψ(x) in a broad
vicinity of the origin. We may recall recurrences (7) and reveal that theh0- andh1-dependence
of any coefficienthn is linear:

hn = h0σn + h1ωn σ0 = ω1 = 1 σ1 = ω0 = 0.

All three sequenceshn, σn andωn satisfy the same recurrences. As long asσ1 = 0 andω0 = 0
we may omit the second or first column from equation (19) in the latter two respective cases.
In terms of the(m + 1)-dimensional matrices

6m =



C0 A0

δ 0 A1
... C2 0 A2

1
... C3

. . .
. . .

0 −β . . .
. . . 0 Am−2

... 1
. . . δ Cm−1 0 Am−1
. . . . . . δ Cm 0


and

�m =



0 A0

C1 0 A1

δ C2 0 A2
... δ C3

. . .
. . .

1
... δ

. . . 0 Am−2
. . . −β . . . Cm−1 0 Am−1

1 . . . δ Cm 0


we may rewrite not only the recurrences themselves but also their unexpectedly compact
solution

σn+1 = (−1)n
det6n−1

n!(n + 1)!
ωn+1 = (−1)n

det�n−1

n!(n + 1)!
n = 1, 2, . . . . (20)
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We need to know just the correct physical values of the three variable parameters (the norm

ρ =
√
h2

0 + h2
1, the ratioh1/h0 ≡ tanζ and the physical energyE) in order to be able to define

our physical wavefunctionψ(x) completely in terms of these closed formulae.

6.3. Alternative ansatze and constructions

We have shown that the Taylor-series ansatz (6) mediates a useful transition from differential
equation (3) to the difference equation (7), followed by its further replacement by our final
matrix Schr̈odinger equation (19). In this context it is important to mention that our choice of
the initial form of ansatz (6) is far from unique.

A nice example of an alternative expansion may be found in [31] where the Hill-
determinant study of the symmetric potentialsV (x) = x2 + λu(x) with the non-polynomial
anharmonicityu(x) = x2/(1 +gx2) via the series of the form (6) has been rendered possible
by the use of the Taylor series in powers of the ‘adapted’ variableu(x). Sophisticated versions
of the latter trick move the (complex) singularities off the physical domain of convergence and
their active use in physics dates back to Jaffé [32] at least. They may even help us to deal with
relativistic corrections [33] etc.

Unfortunately, an application of the changes of variables to asymmetric potentials is not
without its specific difficulties. Efficient methods of their suppression have been suggested,
therefore, in our older paper [34] and, recently, by Bayet al [25]. Most often, one employs
thetwo independentseparate ansatze (one for each half-axis) and matches the wavefunctions,
say, in the origin.

In the latter comparison, the method of paper [25] is most straightforward. It is based
simply on an introduction of the second free parameter (G orV in the original notation). Even
from the very numerical point of view, the essence of the algorithm of Bayet al remains purely
iterative, therefore.

The more algebraic method of [34] works directly with the matched, ‘doubly infinite’
sparse matrices. Although the algorithm itself is already fully algebraicized, its universality
seems redundant for our present purposes. Indeed, thePT -symmetric forces (1) are only
composed of the real part which is spatially symmetric and of the non-vanishing imaginary
part which is spatially antisymmetric. This additional information is well reflected and used
by our present non-matching approach.

We summarize that we were able to preserve a maximal similarity of our ‘new Hill
determinants’ to their current Hermitian predecessors (cf, e.g., [19]). Moreover, in a way
completing the parallel studies of the otherPT symmetric potentials, the very specific form
of their spatial asymmetry again proved ‘extremely weak’ from the purely methodical point
of view. We reconfirmed that its simplifying role strongly resembles the role of the usual
P-symmetry (i.e. parity), so useful in many parts of the current textbook quantum mechanics.
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